Timesteps#
- class vision_architectures.utils.timesteps.TimestepSampler(total_timesteps, strategy, gamma_alpha=1.0, gamma_spread=0.8, signal_to_noise_ratios=None, temperature=2.0)[source]#
Bases:
Module
Sampel timesteps using a strategy.
- Parameters:
total_timesteps (
int
) – Total number of timesteps.strategy (
Literal
['uniform'
,'gamma'
,'importance'
]) – Sampling strategy.gamma_alpha (
float
) – Used when strategy == gamma. Alpha parameter for the gamma distribution.gamma_spread (
float
) – Used when strategy == gamma. Controls how spread out the distribution is.signal_to_noise_ratios (
Optional
[Tensor
]) – Used when strategy == importance. Signal-to-noise ratios of the noise schedule.temperature (
float
) – Used when strategy == importance. Temperature for the softmax distribution.