FPN3D#

pydantic model vision_architectures.nets.fpn_3d.FPN3DBlockConfig[source]#

Bases: CNNBlockConfig

Show JSON schema
{
   "title": "FPN3DBlockConfig",
   "type": "object",
   "properties": {
      "in_channels": {
         "default": null,
         "description": "Calculated based on other parameters",
         "title": "In Channels",
         "type": "null"
      },
      "out_channels": {
         "default": null,
         "description": "Calculated based on other parameters",
         "title": "Out Channels",
         "type": "null"
      },
      "kernel_size": {
         "default": 3,
         "title": "Kernel Size",
         "type": "integer"
      },
      "padding": {
         "anyOf": [
            {
               "type": "integer"
            },
            {
               "items": {
                  "type": "integer"
               },
               "type": "array"
            },
            {
               "type": "string"
            }
         ],
         "default": "same",
         "title": "Padding"
      },
      "stride": {
         "default": 1,
         "title": "Stride",
         "type": "integer"
      },
      "conv_kwargs": {
         "additionalProperties": true,
         "default": {},
         "title": "Conv Kwargs",
         "type": "object"
      },
      "transposed": {
         "default": false,
         "description": "Whether to perform ConvTranspose instead of Conv",
         "title": "Transposed",
         "type": "boolean"
      },
      "normalization": {
         "anyOf": [
            {
               "type": "string"
            },
            {
               "type": "null"
            }
         ],
         "default": "batchnorm3d",
         "title": "Normalization"
      },
      "normalization_pre_args": {
         "default": [],
         "items": {},
         "title": "Normalization Pre Args",
         "type": "array"
      },
      "normalization_post_args": {
         "default": [],
         "items": {},
         "title": "Normalization Post Args",
         "type": "array"
      },
      "normalization_kwargs": {
         "additionalProperties": true,
         "default": {},
         "title": "Normalization Kwargs",
         "type": "object"
      },
      "activation": {
         "anyOf": [
            {
               "type": "string"
            },
            {
               "type": "null"
            }
         ],
         "default": "relu",
         "title": "Activation"
      },
      "activation_kwargs": {
         "additionalProperties": true,
         "default": {},
         "title": "Activation Kwargs",
         "type": "object"
      },
      "sequence": {
         "default": "CNA",
         "enum": [
            "C",
            "AC",
            "CA",
            "CD",
            "CN",
            "DC",
            "NC",
            "ACD",
            "ACN",
            "ADC",
            "ANC",
            "CAD",
            "CAN",
            "CDA",
            "CDN",
            "CNA",
            "CND",
            "DAC",
            "DCA",
            "DCN",
            "DNC",
            "NAC",
            "NCA",
            "NCD",
            "NDC",
            "ACDN",
            "ACND",
            "ADCN",
            "ADNC",
            "ANCD",
            "ANDC",
            "CADN",
            "CAND",
            "CDAN",
            "CDNA",
            "CNAD",
            "CNDA",
            "DACN",
            "DANC",
            "DCAN",
            "DCNA",
            "DNAC",
            "DNCA",
            "NACD",
            "NADC",
            "NCAD",
            "NCDA",
            "NDAC",
            "NDCA"
         ],
         "title": "Sequence",
         "type": "string"
      },
      "drop_prob": {
         "default": 0.0,
         "title": "Drop Prob",
         "type": "number"
      },
      "dim": {
         "title": "Dim",
         "type": "integer"
      },
      "skip_conn_dim": {
         "title": "Skip Conn Dim",
         "type": "integer"
      },
      "is_deepest": {
         "default": false,
         "description": "True if this is the deepest block in the FPN, else False",
         "title": "Is Deepest",
         "type": "boolean"
      },
      "interpolation_mode": {
         "default": "trilinear",
         "title": "Interpolation Mode",
         "type": "string"
      },
      "merge_method": {
         "default": "add",
         "enum": [
            "add",
            "concat"
         ],
         "title": "Merge Method",
         "type": "string"
      }
   },
   "required": [
      "dim",
      "skip_conn_dim"
   ]
}

Config:
  • arbitrary_types_allowed: bool = True

  • extra: str = ignore

  • validate_default: bool = True

  • validate_assignment: bool = True

  • validate_return: bool = True

Fields:
Validators:

field dim: int [Required]#
Validated by:
field kernel_size: int = 3#
Validated by:
field skip_conn_dim: int [Required]#
Validated by:
field is_deepest: bool = False#

True if this is the deepest block in the FPN, else False

Validated by:
field interpolation_mode: str = 'trilinear'#
Validated by:
field merge_method: Literal['add', 'concat'] = 'add'#
Validated by:
field in_channels: None = None#

Calculated based on other parameters

Validated by:
field out_channels: None = None#

Calculated based on other parameters

Validated by:
pydantic model vision_architectures.nets.fpn_3d.FPN3DConfig[source]#

Bases: CustomBaseModel

Show JSON schema
{
   "title": "FPN3DConfig",
   "type": "object",
   "properties": {
      "blocks": {
         "items": {
            "$ref": "#/$defs/FPN3DBlockConfig"
         },
         "title": "Blocks",
         "type": "array"
      }
   },
   "$defs": {
      "FPN3DBlockConfig": {
         "properties": {
            "in_channels": {
               "default": null,
               "description": "Calculated based on other parameters",
               "title": "In Channels",
               "type": "null"
            },
            "out_channels": {
               "default": null,
               "description": "Calculated based on other parameters",
               "title": "Out Channels",
               "type": "null"
            },
            "kernel_size": {
               "default": 3,
               "title": "Kernel Size",
               "type": "integer"
            },
            "padding": {
               "anyOf": [
                  {
                     "type": "integer"
                  },
                  {
                     "items": {
                        "type": "integer"
                     },
                     "type": "array"
                  },
                  {
                     "type": "string"
                  }
               ],
               "default": "same",
               "title": "Padding"
            },
            "stride": {
               "default": 1,
               "title": "Stride",
               "type": "integer"
            },
            "conv_kwargs": {
               "additionalProperties": true,
               "default": {},
               "title": "Conv Kwargs",
               "type": "object"
            },
            "transposed": {
               "default": false,
               "description": "Whether to perform ConvTranspose instead of Conv",
               "title": "Transposed",
               "type": "boolean"
            },
            "normalization": {
               "anyOf": [
                  {
                     "type": "string"
                  },
                  {
                     "type": "null"
                  }
               ],
               "default": "batchnorm3d",
               "title": "Normalization"
            },
            "normalization_pre_args": {
               "default": [],
               "items": {},
               "title": "Normalization Pre Args",
               "type": "array"
            },
            "normalization_post_args": {
               "default": [],
               "items": {},
               "title": "Normalization Post Args",
               "type": "array"
            },
            "normalization_kwargs": {
               "additionalProperties": true,
               "default": {},
               "title": "Normalization Kwargs",
               "type": "object"
            },
            "activation": {
               "anyOf": [
                  {
                     "type": "string"
                  },
                  {
                     "type": "null"
                  }
               ],
               "default": "relu",
               "title": "Activation"
            },
            "activation_kwargs": {
               "additionalProperties": true,
               "default": {},
               "title": "Activation Kwargs",
               "type": "object"
            },
            "sequence": {
               "default": "CNA",
               "enum": [
                  "C",
                  "AC",
                  "CA",
                  "CD",
                  "CN",
                  "DC",
                  "NC",
                  "ACD",
                  "ACN",
                  "ADC",
                  "ANC",
                  "CAD",
                  "CAN",
                  "CDA",
                  "CDN",
                  "CNA",
                  "CND",
                  "DAC",
                  "DCA",
                  "DCN",
                  "DNC",
                  "NAC",
                  "NCA",
                  "NCD",
                  "NDC",
                  "ACDN",
                  "ACND",
                  "ADCN",
                  "ADNC",
                  "ANCD",
                  "ANDC",
                  "CADN",
                  "CAND",
                  "CDAN",
                  "CDNA",
                  "CNAD",
                  "CNDA",
                  "DACN",
                  "DANC",
                  "DCAN",
                  "DCNA",
                  "DNAC",
                  "DNCA",
                  "NACD",
                  "NADC",
                  "NCAD",
                  "NCDA",
                  "NDAC",
                  "NDCA"
               ],
               "title": "Sequence",
               "type": "string"
            },
            "drop_prob": {
               "default": 0.0,
               "title": "Drop Prob",
               "type": "number"
            },
            "dim": {
               "title": "Dim",
               "type": "integer"
            },
            "skip_conn_dim": {
               "title": "Skip Conn Dim",
               "type": "integer"
            },
            "is_deepest": {
               "default": false,
               "description": "True if this is the deepest block in the FPN, else False",
               "title": "Is Deepest",
               "type": "boolean"
            },
            "interpolation_mode": {
               "default": "trilinear",
               "title": "Interpolation Mode",
               "type": "string"
            },
            "merge_method": {
               "default": "add",
               "enum": [
                  "add",
                  "concat"
               ],
               "title": "Merge Method",
               "type": "string"
            }
         },
         "required": [
            "dim",
            "skip_conn_dim"
         ],
         "title": "FPN3DBlockConfig",
         "type": "object"
      }
   },
   "required": [
      "blocks"
   ]
}

Config:
  • arbitrary_types_allowed: bool = True

  • extra: str = ignore

  • validate_default: bool = True

  • validate_assignment: bool = True

  • validate_return: bool = True

Fields:
Validators:
field blocks: list[FPN3DBlockConfig] [Required]#
Validated by:
property dim#
validator validate_before  »  all fields[source]#

Base class method for validating data before creating the model.

validator validate  »  all fields[source]#

Base method for validating the model after creation.

class vision_architectures.nets.fpn_3d.FPN3DBlock(config={}, checkpointing_level=0, **kwargs)[source]#

Bases: Module

__init__(config={}, checkpointing_level=0, **kwargs)[source]#

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(*args, **kwargs)[source]#

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class vision_architectures.nets.fpn_3d.FPN3D(config={}, checkpointing_level=0, **kwargs)[source]#

Bases: Module, PyTorchModelHubMixin

__init__(config={}, checkpointing_level=0, **kwargs)[source]#

Initialize internal Module state, shared by both nn.Module and ScriptModule.

forward(*args, **kwargs)[source]#

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.