CropPad#
- vision_architectures.transforms.croppad.get_updated_crop_start(current_crop_start, new_crop_start)[source]#
- class vision_architectures.transforms.croppad.CropForegroundWithCropTrackingd(crop_offset_key='crop_offset', *args, **kwargs)[source]#
Bases:
CropForegroundd
- __init__(crop_offset_key='crop_offset', *args, **kwargs)[source]#
- Parameters:
keys – keys of the corresponding items to be transformed. See also:
monai.transforms.compose.MapTransform
source_key – data source to generate the bounding box of foreground, can be image or label, etc.
select_fn – function to select expected foreground, default is to select values > 0.
channel_indices – if defined, select foreground only on the specified channels of image. if None, select foreground on the whole image.
margin – add margin value to spatial dims of the bounding box, if only 1 value provided, use it for all dims.
allow_smaller – when computing box size with margin, whether to allow the image edges to be smaller than the final box edges. If False, part of a padded output box might be outside of the original image, if True, the image edges will be used as the box edges. Default to True.
k_divisible – make each spatial dimension to be divisible by k, default to 1. if k_divisible is an int, the same k be applied to all the input spatial dimensions.
mode – available modes for numpy array:{
"constant"
,"edge"
,"linear_ramp"
,"maximum"
,"mean"
,"median"
,"minimum"
,"reflect"
,"symmetric"
,"wrap"
,"empty"
} available modes for PyTorch Tensor: {"constant"
,"reflect"
,"replicate"
,"circular"
}. One of the listed string values or a user supplied function. Defaults to"constant"
. See also: https://numpy.org/doc/1.18/reference/generated/numpy.pad.html https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html it also can be a sequence of string, each element corresponds to a key inkeys
.start_coord_key – key to record the start coordinate of spatial bounding box for foreground.
end_coord_key – key to record the end coordinate of spatial bounding box for foreground.
allow_missing_keys – don’t raise exception if key is missing.
lazy – a flag to indicate whether this transform should execute lazily or not. Defaults to False.
pad_kwargs – other arguments for the np.pad or torch.pad function. note that np.pad treats channel dimension as the first dimension.
- class vision_architectures.transforms.croppad.RandSpatialCropSamplesWithCropTracking(crop_offset_key='crop_offset', *args, **kwargs)[source]#
Bases:
RandSpatialCropSamples