Upsample / Downsample#
- pydantic model vision_architectures.layers.scale.PixelShuffleScaleConfig[source]#
Bases:
CNNBlockConfig
Configuration class for scaling using PixelShuffle method.
Show JSON schema
{ "title": "PixelShuffleScaleConfig", "description": "Configuration class for scaling using PixelShuffle method.", "type": "object", "properties": { "in_channels": { "title": "In Channels", "type": "integer" }, "out_channels": { "title": "Out Channels", "type": "integer" }, "kernel_size": { "anyOf": [ { "type": "integer" }, { "items": { "type": "integer" }, "type": "array" } ], "title": "Kernel Size" }, "padding": { "anyOf": [ { "type": "integer" }, { "items": { "type": "integer" }, "type": "array" }, { "type": "string" } ], "default": "same", "title": "Padding" }, "stride": { "default": 1, "title": "Stride", "type": "integer" }, "conv_kwargs": { "additionalProperties": true, "default": {}, "title": "Conv Kwargs", "type": "object" }, "transposed": { "default": false, "description": "Whether to perform ConvTranspose instead of Conv", "title": "Transposed", "type": "boolean" }, "normalization": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": "batchnorm3d", "title": "Normalization" }, "normalization_pre_args": { "default": [], "items": {}, "title": "Normalization Pre Args", "type": "array" }, "normalization_post_args": { "default": [], "items": {}, "title": "Normalization Post Args", "type": "array" }, "normalization_kwargs": { "additionalProperties": true, "default": {}, "title": "Normalization Kwargs", "type": "object" }, "activation": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": "relu", "title": "Activation" }, "activation_kwargs": { "additionalProperties": true, "default": {}, "title": "Activation Kwargs", "type": "object" }, "sequence": { "default": "CNA", "enum": [ "C", "AC", "CA", "CD", "CN", "DC", "NC", "ACD", "ACN", "ADC", "ANC", "CAD", "CAN", "CDA", "CDN", "CNA", "CND", "DAC", "DCA", "DCN", "DNC", "NAC", "NCA", "NCD", "NDC", "ACDN", "ACND", "ADCN", "ADNC", "ANCD", "ANDC", "CADN", "CAND", "CDAN", "CDNA", "CNAD", "CNDA", "DACN", "DANC", "DCAN", "DCNA", "DNAC", "DNCA", "NACD", "NADC", "NCAD", "NCDA", "NDAC", "NDCA" ], "title": "Sequence", "type": "string" }, "drop_prob": { "default": 0.0, "title": "Drop Prob", "type": "number" }, "scale_factor": { "default": 2, "description": "Scale factor for upsampling / downsampling.", "title": "Scale Factor", "type": "integer" } }, "required": [ "in_channels", "out_channels", "kernel_size" ] }
- Config:
arbitrary_types_allowed: bool = True
extra: str = ignore
validate_default: bool = True
validate_assignment: bool = True
validate_return: bool = True
- Fields:
- Validators:
-
field scale_factor:
int
= 2# Scale factor for upsampling / downsampling.
- Validated by:
- class vision_architectures.layers.scale.PixelShuffleUpsample3D(config={}, checkpointing_level=0, **kwargs)[source]#
Bases:
Module
- __init__(config={}, checkpointing_level=0, **kwargs)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(*args, **kwargs)[source]#
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class vision_architectures.layers.scale.PixelShuffleDownsample3D(config={}, checkpointing_level=0, **kwargs)[source]#
Bases:
Module
- __init__(config={}, checkpointing_level=0, **kwargs)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- forward(*args, **kwargs)[source]#
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.